Wastewater Systems Hans Newsom Environmental Assistance Office ### Agenda Wastewater? Community Responsibilities Viability **Wastewater Basics** - Process Overview - Technologies Problem Solving Questions ### TMF Watch Missouri Department of **Natural Resources** EMI #### What is Wastewater? Water that has been <u>used</u>, as for washing or flushing or in a manufacturing process, and so <u>contains waste</u> <u>products</u>; sewage ### Why Treat Wastewater? Prevent the spread of disease Protect water resources Insure adequate water supplies ### Waste Products / Pollutants #### <u>Microorganisms</u> - bacteria - viruses - protozoan #### **Toxics** - pesticides - solvents - heavy metals #### **Nutrients** - phosphorus - nitrogen - ammonia #### Organic Matter - plant sources - animal sources #### **Solids** ## Domestic Wastewater Sources Restrooms Showers Washing machines Dishwashers Kitchen facilities Homes Schools Offices Restaurants Stores ## Industrial Wastewater Sources Manufacturing Facilities: - metals - toxics - oils **Food Processing** Facilities: - high flows - high strength ## Storm Water Wastewater Sources #### **Combined Sewers** Inflow - above ground sources - manholes - downspouts - sump pumps Infiltration - below ground sources - damaged manholes - faulty pump stations - broken collection lines ## Wastewater Is A Local Responsibility It is generated by the community The community is the first defense in protecting public health Meeting this responsibility involves the commitment of the communityand IT'S THE LAW ### Viable Wastewater Systems Maintain capability in the areas of: - Technology - Management - Finances Consistently comply with federal, state and local regulations. ### **Technical Capacity** Hydraulic loading capability Organic loading capability Solids handling capability Adequate staffing Trained personnel ## Certified Wastewater Operators #### Treatment facilities - Serving 200 or more people or - Having 50 or more service connections #### Owned or operated by: - Municipal entities - Private sewer companies - State or federal agencies ## Certified Wastewater Operators Certification levels: A through D Exam and experience requirements 3 year certification 30 hours training for certificate renewal ### **Technical Capacity** #### Operations and maintenance - O & M manual on site - Lab equipment for process control and regulatory testing - Scheduled maintenance - Spare parts and emergency equipment - Accurate operations record keeping - Safety program ## Managerial Capacity Regulatory Compliance #### Obtain required permits: - Land disturbance permits - Construction permits - Operating permits Operate within permit limits Perform required testing Submit monitoring reports ## Managerial Capacity Compliance Tools Managerial policies and procedures Ordinances: - Pretreatment - Sewer use - User charge - Fats, Oils and Grease (FOG) System evaluation - MWPP ### **Financial Capacity** Self-supporting utility **Budgets** lPlanning Reserves **Emergency plan** Costs review User rates review ## If TMF Capacity is Lacking? #### Problems such as: - Unskilled, underpaid operators - Understaffed systems - Inadequate maintenance - Overloaded infrastructure - Inadequate financial resources Can lead to ... # Wastewater Technology you Choose Depends on... ## How you Dispose of the Effluent Surface disposal Recycling / reuse Percolation - On-site systems Evapotranspiration - Arid regions ### Reuse and Recycling #### Irrigation: - Some crops - Silviculture (Managed Forests) - Golf Courses - Landscaping ### Graywater Recycling: Use for flush toilets ## Surface Disposal of Wastewater - National Pollution Discharge Elimination System (NPDES) required - Limits based on the characteristics and uses of the receiving water - Requires regular monitoring / reporting ## Receiving Water Classification - Mississippi River or Missouri River - Lake or reservoir - Losing stream - A metropolitan nodischarge stream - Special streams - Subsurfacewaters / aquifers - All other waters ### Water Body Beneficial Use - Livestock & wildlife watering - Warm water aquaticlife / fish consumption - Cold water fishery - Whole body contact - Boating and canoeing - Drinking water supply - Industrial ## Effluent Limits Monitoring Requirements Biochemical Oxygen Demand (BOD) -rate of oxygen use by organisms Total Suspended Solids (TSS) suspended solid particles pH - basic or acidiccondition of water Fecal coliform indicator bacteria possible pathogens present ## **Discharge Limits** Missouri Department of **Natural Resources** | | Miss.
& MO | New
Lagoon | New
TF | Special Streams | |-------------------|---------------|---------------|--------------|-----------------| | BOD | 30/45 | 45/65 | 40/60 | 10/15 | | TSS | 30/45 | 70/100 | 40/60 | 15/20 | | рН | 6-9 | 6-9 | 6-9 | 6-9 | | Fecal
Coliform | 400/
1000 | 400/
1000 | 400/
1000 | 400/
1000 | ### **Wastewater Disinfection** Required for "whole body contact" water body use - Chlorination / dechlorination - Ultraviolet (UV) light - Ozone #### **Wastewater Solids** All wastewater treatment systems produce "sludge" or settleable solids that remain following treatment. Biosolids - Treated sludge, that meets Federal 503 Regulations - Class A or Class B ### **Wastewater Solids** #### Sludge treatment processes: - aerobic digestion - anaerobic digestion - drying - composting - lime stabilization - heat treatment Requires adequate storage and disposal or reuse location ## Wastewater Cycle ## Wastewater Process Overview Three components of the wastewater process: - Collection - Treatment - Disposal / reuse ## **Collection Systems** Gravity sewers - combined sewers Small diameter gravity sewers Pressure sewers - STEP / grinder pump Vacuum sewers ## Conventional Gravity Sewers Appropriate in densely populated areas Gravity flow through sewers, and manholes to pumping stations and treatment Potential infiltration and inflow problems ## **Small Diameter Gravity Sewers** Solids - to septic tank Effluent - to small diameter gravity lines to treatment unit or gravity collection system ### **Pressure Sewers: STEP** Septic tank effluent pumps (STEP) Wastewater to septic tank - Solids settle Effluent pumped to treatment plant ### **Grinder Pumps** Storage tank - grinder pump Effluent and ground solids pumped to treatment plant or gravity sewers Requires regular maintenance ### **Cluster Systems** Alternative sewers - neighborhood treatment facility Subdivisions w/ small lot sizes, far from central treatment ## **Treatment Systems** ### **Goals of Treatment** Separate solids from liquids Reduce organic materials (BOD) Reduce nutrients Reduce pathogens Reduce toxic discharges ### **Methods of Treatment** Physical Biological Chemical ### **Preliminary Treatment** ## Removal of coarse heavy solids - rags - sticks - sand - toys - clothing #### Equipment used - Bar Screens - Comminutors - Grit Chambers #### Flow Equalization Equalization basin ### PRIMARY TREATMENT #### CLARIFICATION - Separation of solids - Settlable - Floatable ### **Secondary Treatment** #### **BIOLOGICAL REDUCTION OF BOD** - Fixed Film trickling filters, rbc's, sand filter systems - Activated Sludge - Lagoon Systems - Secondary Clarification ### **Tertiary Treatment** Required to meet very stringent discharge limits Filters Removal of Nitrogen Removal of Phosphorus ### **Types of Treatment** Soil-Based Systems Land-Based (Natural) Systems Mechanical Systems ### Soil-Based Systems On-site wastewater systems Soil used for treatment and disposal/reuse Department of Health regulations govern on-site systems in Missouri ### Conventional Septic System Septic tank - drain field Adequate lot size, well-drained soils and limited slopes ### **Drop Box Drainage Field** Drop boxes allow trenches to fill evenly Trenches can be capped to allow resting Allows placement on gentle to steeply sloped sites ## Shallow Low Pressure Pipe System (LPP) Septic tank - pump tank - shallow small diameter pressure distribution pipe High groundwater, steep slopes, or shallow soils Requires annual flushing # Effective / Reliable On-site Systems are Properly: Sited Designed Constructed Operated Maintained # Reasons For Septic System Failure Inadequate maintenance Under-design Faulty installation Damaged system Poor soil conditions # On-site/Decentralized Wastewater Management Management programs - the future of on-site wastewater for: - Communities - Cities - Counties - Sewer districts # Five EPA Model Management Programs - 1. System Inventory/Awareness of maintenance needs - 2. Management maintenance contracts - 3. Management operating permits - 4. Utility operation and maintenance - 5. Utility ownership and management ## Land-based (Natural) Systems Lagoons Constructed Wetlands Land Application Systems ### Lagoons Require considerable land Simple to operate, handle shock loads #### Types: - Aerobic - Anaerobic - Aerated - Facultative #### **Constructed Wetlands** Year round treatment Inexpensive operation Land requirements Must pre-treat wastewater ### Sand Filters Pretreatment required High quality effluent Low O&M costs #### Recirculating Single Pass Surface discharge Subsurface discharge ## **Slow-Rate Land Application** Treatment / disposal method Pretreatment required Beneficial reuse Low tech ## Mechanical Treatment Systems #### Activated Sludge - Conventional Activated Sludge - Oxidation Ditch - Sequencing Batch Reactor (SBR) #### Fixed Film - Trickling Filter - Rotating Biological Contactor (RBC) ### **Activated Sludge Systems** ## Conventional Activated Sludge Process ### Package Plant Flows 10,000 - 50,000 gpd Compact, pre-fabricated Requires skilled certified operators #### **Oxidation Ditch** Large footprint - Low O&M costs Handles shock loads / hydraulic surges Low sludge production ## How Does it All Fit Together? It will be different for every community because every community is different Variables include: - topography - land availability / cost - population - receiving stream - finances - commercial / industrial loading ### Farm Town, USA - Farming community pop. 183 in 58 homes - Single cell lagoon serves 27 homes and business - out of compliance - Failing on-site systems - Residents income level low to moderate - High water rate and water system problems ## Map of Farm Town: Connections ### Farm Town: Tracts ### Recommended Solution # Cost Comparison of Options | Technology
Option | Total Capital
Cost | Annualized
Capital
Costs | Annual
O&M
Costs | Annualized Capital
Costs plus O&M | |----------------------|-----------------------|--------------------------------|------------------------|--------------------------------------| | Centralized System | | | | | | (Model A) | \$ 578,970 | \$ 28,550 | \$ 49,320 | \$ 77,870 | | Centralized w/ | | | | | | cluster and onsite | | | | | | (Model B) | \$ 378,178 | \$ 12,826 | \$ 27,514 | \$ 40,340 | | Centralized | | | | | | w/ onsite | \$ 422,451 | \$ 19,780 | \$ 28,110 | \$ 47,890 | # Addressing Needs & Solving Problems - Define problem / Assess needs - Enlist aid of consultants / assistance providers / operators - Consider any viable alternative - Evaluate initial and continuing costs - Make informed choices ### The Result of Your Commitment Help Lead Your Community to: A Viable Affordable Effective System ### Questions? ## Technical and Financial Assistance Sources #### Federal Agencies - U.S. Department of Agriculture - Rural Business & Cooperative Development Service - Rural Development ## Technical and Financial Assistance Sources #### State Agencies - Department of Economic Development - Community Development Block Grants Program - Missouri Department of Natural Resources - Water Pollution Control Program - Regional Offices - Environmental Assistance Office ## Technical and Financial Assistance Sources #### Other Agencies - Missouri Rural Water Association - Midwest Assistance Program - Regional Planning Commissions and Councils of Government #### **Postscript** # Additional Collection Systems #### Vacuum Sewers Suction moves sewage through vacuum lines to central collection tank Requires operator; has high O&M ### Alternative Effluent Collection #### Small diameter, shallow lines # Additional Treatment Systems #### **Mound System** Septic tank - pump tank - pressure distribution - sand mound Poor soils, shallow bedrock, or high water table #### Overland Flow Land-based treatment process with a point-source discharge Pretreatment required Low tech # Additional Activated Sludge Systems ## Sequencing Batch Reactor (SBR) Equalization, primary clarification, treatment and secondary clarification in single reactor Small footprint High tech High O&M costs **EMI** # Fixed Media Treatment Systems #### **Trickling Filters** Requires primary treatment Small footprint - Moderate tech level Low power requirements Nitrification Additional treatment needed for tight discharge standards ## Rotating Biological Contactors (RBC) Requires primary treatment Small footprint - Moderate tech level Nitrification Additional treatment needed for tight discharge standards